

Copyright © 2003/2004 by MyKey Technology Inc.

 The Fallacy of Software Write Protection in Computer Forensics
 Mark Menz & Steve Bress
 Version 2.4
 May 2, 2004

Copyright © 2003/2004 by MyKey Technology Inc.

 1.0 Table of Contents

1. Table of Contents
2. Abstract
3. Introduction
4. Problems

a. Controlled Items
b. Unforeseen failure problems that can occur and bad luck
c. Administrative reasons

5. Conclusion

Copyright © 2003/2004 by MyKey Technology Inc.

 2.0 Abstract

Abstract
The use of software for digital media protection in the field of computer forensics is not
viable. The complexity of the systems and inability to control the makeup of those
systems preclude the predictive nature that is required to insure a software write blocker,
and other functions of media protection, can work reliably and consistently. The
preceding coupled with the added element of human discretion eliminates the ability to
certify that a system will work properly consistently. This ability to work consistently is
imperative when dealing with original evidence, which in most cases is a hard drive from
a computer. A failure, such as a write to the drive, can cause unrecoverable damage.
Basically, a PC based system is designed to write to its media. Any failure of a software
protected PC based system can allow it to write to its media. A properly designed
hardware media protection device, however, allows no changes to the media even if it has
a failure. You can certify a controllable device but not a dynamic system.

 3.0 Introduction

Introduction
The first and primary concern in computer forensics is the preservation of the Court's
evidence. Conflicting with that concern is the operating system and operating hardware
of the computer you attach the evidence to. Take, for instance, the Microsoft Windows®
operating system. There are a tremendous number of file writes that occur upon boot up
of any Windows operating system. Any idea how many write commands are issued in a
standard Windows boot up? Most people are not aware that data may be written to a drive
during the boot process. If any changes gets through, your evidence is now questionable.
With the complexity of today’s operating systems, you just can’t tell how many programs
will load during the boot sequence. For example, run Task Manager and you’ll be
shocked by the number of separate Processes that are launched at boot up. If any of these
launch and make a write call to the hard drive, your evidence is toast.

When you duplicate or preview the original evidence, failure is not an option. Recovery
from a failure that changes the evidence from its original state during the duplication or
preview phase is not possible.

The chances of a failure vary greatly for a number of reasons. For example, in most cases
you do not know the true heritage of the evidence (in this case, some form of digital
media) that needs to be preserved and reviewed. At no point can even a single bit be
changed without serious consequences. To that end, it is imperative that the environment
in which the evidence is placed and operated be predictive, controlled and protective.
This is the foundation for digital media protection; of which write protection (write
blocking) is one part.

Copyright © 2003/2004 by MyKey Technology Inc.

For a system to be controllable it must be predictive. A system that is controllable can
also be designed to be protective. The key here is predictive behavior of the system.
Knowing what a system will do at any given point in time is predictability.

A personal computer today is a complex system of components, devices, data and
operating and file system software. Within this complex system, an increasing number of
autonomous automatic tasks are performed. Some are well known and some not as well
known. Combine this with human discretion and just plain bad luck, predicting and
controlling the system consistently is all but impossible. Consistently controlling the
ability of a computer system to not modify the state of the evidence media via software
cannot be done in this complex environment. There are too many points of failure that
can have catastrophic consequences to the Court's evidence. What are some of these
dynamic elements that preclude software protection? That is what we will now present.

We will first look at things that can go wrong. We will then end by looking at what we
call “Administrative Reasons” for not using software write blocking. Again, we are not
concerned about the system when everything is working right, but we are very concerned
about the many ways that things can go wrong.

 4.0 Problems

Things that can go wrong
The first thing we want to establish is a point that everyone should be able to agree with.
If you are using software write blocking, the device to be protected is not protected until;

1. The computer boots correctly.
2. The Operating System (OS) is loaded and operating correctly.
3. The write blocking software is loaded.
4. The write blocking software is operational.

While there may be some overlap in these steps, all of them are necessary for software
write blocking to have a chance at being effective. Until all these steps have completed
and are operating correctly the evidence is exposed. With that established, we will now
show why the concept of software write blocking is a fallacy.

Let's look at the way a system boots up and specifically the system's BIOS. A software
write block may be heavily dependent on a particular BIOS. Did the manufacturer of the
write block test different BIOSes with their software? Any change to a system's BIOS,
such as a firmware upgrade using onboard FLASH, may also affect the operation of a
software write block. Every system has a different BIOS, a company X BIOS in a
Gateway may be different from the company X BIOS in a Dell. In fact it could vary by
model number and even within the same model. Also different versions of BIOSes could
vary greatly on their startup and operational characteristics. In addition to the system's
BIOS there are BIOSes that load from peripheral cards, such as SCSI, IDE controller
cards or SATA controller cards. What is the effect of this on a software write block? Has
your supplier tested it? What version did they test? Do you know what your system does?

Copyright © 2003/2004 by MyKey Technology Inc.

Remember, until the OS and then write blocking software loads and is operational your
media is unprotected, and even after that it may be unprotected.

Also, in this pre OS loading time frame, any number of boot errors can occur, including a
failure to load off the forensic drive or CD. A change or error in the system BIOS could
cause the system to load off an attached drive. Some of the newer BIOSes can boot not
only from standard drives such as IDE, but also from external USB devices. Since the
BIOS has code to both read and write to any attached device, any kind of a glitch in the
boot sequence can have catastrophic results to an evidence drive. Even more troubling is
that modern motherboards have the ability to boot from a network source. Couple this
with the proliferation of wireless devices, such as Bluetooth, WiFi, and ZigBee, and it is
getting increasingly more difficult to have full and true knowledge of the state of a
machine.

Any software write block will be heavily dependent on the OS in which it will be used.
Care must be taken to insure that the OS you have is compatible and that the manufacture
of the write blocking software has extensively and correctly tested it. Software written for
one version of the OS may not work with another version or even a different build and/or
Service Pac. Something as seemingly innocuous as a Windows Update may render the
software write blocker ineffective. In addition, care must also be taken to insure that the
OS was installed with all required components and that no errors occurred during
installation. Even an OS that purports to have the ability to “mount read only” can write
to a drive (Reiser and EXT3 in Linux is a good example, it will write to the drive to
change the Journal Count). Do you “know” what your OS and FS (file system) are really
doing?

Application software can have catastrophic effects on software write blockers, both in the
installation and the operation. Applications can load drivers that can supersede your OS
files, thereby making changes to the OS, or work around the normal operations of the OS.
Since device drivers affect the stability of the OS and may have direct access to the PCs
hardware, it is important to know of any interactions. How is this to be tested? Do you
know what all your applications are doing? Are they all working correctly? Given that
once a program can access an I/O port, it can write to a drive directly, can there ever be
any true write protection in software alone? All major operating systems have a
mechanism to allow direct I/O programming. It is this method that allows OS device
drivers talk with the underlying hardware. If the OS has the ability to write but is relying
on a “bit” to tell it where or where not to write, what if the bit is wrong?

There is also the integrity of write blocking drivers. Is the driver using the correct code?
Was the installation proper and correct? Did the code take a "hit" on your drive? Is every
bit correct? Was the code designed correctly? Is the source code available, and if it were,
how would you know what to look for?

Then there is the hardware that needs to be controlled. Is it working correctly? Seemingly
minor problems can cause software to install incorrectly or operate erratically.

Copyright © 2003/2004 by MyKey Technology Inc.

Unforeseen failures and problems that can occur (aka… just plain bad luck)
Let's look at a list of possible failures that can occur that could alter the system and affect
the media. Remember, until the operating system and write blocking drivers are loaded
and working correctly, your attached media is completely exposed to harm. In fact even
after the OS is loaded and drivers operating, it can be exposed to harm.

How many times have you experienced your Windows system crashing or rebooting due
to power glitches or other unexplainable reasons. How often have you started to image a
drive and walked away due to the extended amount of time it takes? If at any time during
this process the system glitches and reboots, the media is unprotected. If the media
contains evidence collected as part of an investigation, all the hard work in obtaining that
evidence may be wasted in a millisecond.

For another example, suppose that we have a software write blocker that loads into
windows and protects the USB ports from writes. The trouble is, you are going to use a
USB to IDE tailgate device to connect that IDE drive to the USB port. What is the
tailgate device doing and what can it do. Does it have the ability to pass a write to the
drive? If so, what prevents it from doing so unintentionally? Beyond the tailgate is the
software itself. What method do they use to determine when a write is occurring verses a
read? Does it really block all ways to write to the device? Given that data has to be
passed from the computer to the tailgate to instruct it what to do, what happens if the
command is misinterpreted? If the tailgate device doesn't have a form of write protection,
it can cause a write.

Other unforeseen problems that can occur include;

Corrupted BIOS caused by
 BIOS Flash failure
 A re-flash of the BIOS code is done with the wrong code
 BIOS flash gets corrupted (virus, accident etc.)
 Hardware failure in reading the BIOS
 The BIOS flash for an update is incompatible with old code

Motherboard Failures
 IDE channel failure
 IDE connecting cable failure (A common cause of drive failures)
 Drive power cable failure (and yes I have one that causes a drive to act errantly)

Special drivers from motherboard manufacturer used that supersede the software
blocking drivers.
USB or Firewire port failure
Cable failure

 Incorrect boot device used (CD-ROM/NET/Wrong drive)

Miscellaneous problems

Drive dock/sled failure
Additional device controller failure (i.e. Promise cards, etc…)

Copyright © 2003/2004 by MyKey Technology Inc.

Both drives set to master
Drive jumper setting failure or drive reads jumpers incorrectly
Incorrect drive label causes incorrect jumper settings
Human error
Just plain bad luck coupled with Murphy issues.

OS problems
 Unknown design flaws (for forensics). Examples are the Linux Reiser and EXT3

file systems that will write to the drive even if mounted read only. It will update a
journal log on the mounted read only drive.

Corrupted drivers
 Drivers experience corruption while installing
 Reading failures of drivers during startup cause unpredictable results
 Change of drivers via Microsoft Service Pac installation
 Change of drivers via Microsoft Windows Update installation
 Slave/Master bit reading failure
 Driver incompatible with a specific build of the kernel

RAM failures
 A read error occurs in RAM disabling write blocking or corrupting OS

Operator errors
 Write Block software not run or installed correctly
 A program has run that bypasses write block software
 Wrong boot sequence is set in the BIOS

Wrong boot device is used or the boot device fails causing a boot to the suspect
media.
External device accidentally left connected during boot

File system problems
 Corruption (virus)
 Corruption of software

In a recent class in computer forensics put on by the California Department of Justice
Advance Training Center, there was a slide rack that caused SUSE Linux to not install
correctly. This was not seen until after the OS was loaded and operating for a few
minutes, at which time the keyboard would constantly fail. It was traced back to
corrupted keyboard drivers caused by the slide rack. (It was repeatable using the slide
rack on different systems.)

A national bank recently experienced some of their ATM machines randomly rebooting
and then failing to load the ATM application. The machines were then showing the
windows desktop with a live keypad.

Copyright © 2003/2004 by MyKey Technology Inc.

Administrative problems
The simplest reason against software write blocking is an administrative reason that is
financially based. Given the multiple points of failure that can occur, why risk it? A
single failure could more than eliminate the saving you incurred by not having hardware
media protection.

In addition, the first thing a defense council or opposing party should and will ask for are
your maintenance logs and operation logs for the computer used with the original media.
They should also ask to see the forensic computer you used to verify the state of the
hardware and the software against the logs.

This means there will be an extra expense for management and proactive auditing to
insure your logs are correct and personnel are following the operational guidelines. There
will also be the added expense for the time it takes in maintaining those logs and the
testing of equipment after any change.

But let's say you use software and damn the torpedoes. The cost in employee time to
defend your practice in court will far exceed the cost of buying a hardware media
protection device. Also if you plan on using software write protection, what is your test
plan? Who will put it together and implement it.

Why risk it? Your reputation is on the line. The Court's evidence is on the line. Any
possible short-term savings are more than offset by the long-term risks and costs
associated with software write protection.

 5.0 Conclusion

Conclusion
Systems that are designed to write but rely on some type of control system to prevent a
write can experience a failure of the controlling system. A computer system using write
blocking software can fail and write to the drive. Media protection devices are systems
that are designed not to write and thus have no controlling system to fail.

Preserving the Court's evidence, an original hard drive in most cases, is your primary
concern. The greatest exposure to unrecoverable failure occurs during the duplication
process. Given the uncontrollable nature of the systems we use, the safest and least
expensive route is to use hardware media protection. You can certify a controllable
device but not a dynamic system.

